

W, Z+2 jet production at hadron colliders

John Campbell ANL

In collaboration with: R. K. Ellis

W+2 jet events

• Many such events at Run I of the Tevatron. For example, with an integrated luminosity of $108~\rm pb^{-1}$ CDF collected $51400~W \rightarrow e\nu$ events, of which $2000~\rm are$ W+2 jet events. This yields an $80\rm pb$ cross-section.

W+2 jet theory

- In the leading order of perturbative QCD, this process can be represented by Feynman tree-graphs.
- At leading order a jet is represented by a single final state quark or gluon (Local Parton-Hadron Duality).
- There are two classes of diagrams at leading order,
 4 quark and 2 quark, 2 gluon.

W+2 jet theory, continued

 Related diagrams provide other initial states that also contribute:

Multi-jet data

• This theory describes multi-jet data fairly well. For example, the leading-jet E_T spectrum for W+n jet production $(n=1,\ldots,4)$:

• Deficiency at high E_T in the W+1 jet sample.

Failings of leading order

- Some discrepancies arise when the theory is examined in more detail.
- An important theoretical input is the value of the renormalization and factorization scales, μ_R and μ_F .
- These artificial variables are required only because we cannot solve the full theory of QCD. Instead, we compute an observable $\mathcal{O}_{\mathrm{full}}$ perturbatively,

$$\mathcal{O}_{\text{full}}^{W+2 \text{ jet}} = \alpha_S^2 \mathcal{O}_2 + \alpha_S^3 \mathcal{O}_3 + \ldots + \alpha_S^r \mathcal{O}_r + \ldots$$

- Truncating this series produces a dependence upon μ_R and μ_F in our predictions.
- Our leading order picture = \mathcal{O}_2 .

Scale worries

• $W+ \ge n$ jets cross-sections from CDF Run I, compared with (enhanced) leading order theory:

$$\mu_R = \mu_F \equiv \mu$$

• To reproduce the raw cross-sections, especially for the W + 1, 2 jet data, the low scale $\mu^2 = \langle p_T \rangle^2$ is preferred.

Scale worries, continued

• Ratio of *n*-jet cross sections, σ_n/σ_{n-1} :

$$\mu_R = \mu_F \equiv \mu$$

- Measures the "reduction in cross section caused by adding a jet" (roughly $\sim \alpha_S$).
- Useful quantity since systematics should cancel.
- High scale $\mu^2 = M_W^2 + p_T^2$ now much closer to data.

Next-to-leading order

 At next-to-leading order, we include an extra "unresolved" parton in the final state

soft

• The theory begins to look more like an experimental jet, so one expects a better agreement with data.

Scale dependence

• W+1 jet cross-section demonstrates the reduced scale dependence that is expected at NLO, as large logarithms are partially cancelled.

• Change between low ~ 20 GeV and high ~ 80 GeV scales is about 30% at LO and < 5% at NLO.

Jet p_T distribution

$$\mu = 80 \text{ GeV}$$

- Leading E_T jet becomes much softer at NLO.
- Exclusive \rightarrow depletion at high- E_T , since jets there are more likely to radiate a parton passing the jet cuts Inclusive \rightarrow shape more similar to LO

W+2 jets, NLO theory

Feynman diagrams for extra parton radiation, e.g.

• Loop diagrams, also one extra factor of α_S :

NLO difficulties

- We must somehow combine two types of diagrams, each with a different number of final state partons.
- Whilst this procedure is well understood from the theory point of view, it does raise problems:
 - There is no simple correspondence between a data event and the theory description.
 - Interfacing with Pythia is difficult, since one must be careful not to double-count soft and collinear radiation. However, there has been some progress in this area recently for relatively simple processes.
 - Less experimental familiarity with NLO generators.

Loop diagrams

- Use the helicity amplitudes of Z. Bern et al.
- Loop integrals are divergent. The usual choice is to regularize in $d=4-2\epsilon$ dimensions.
- Simplistically, the result is:

$$= \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times$$

+ finite terms

- The finite terms are rational functions of the invariants, log's and di-log's. There are many terms and they are also slow to evaluate.
- Can improve speed by using the leading colour term.

Colour decomposition

- Recall the two classes of diagrams ones involving 2 quarks, 2 gluons and those with 4 quarks. We can write the matrix elements for these diagrams as an expansion in the number of colours, N.
- The 2 quark, 2 gluon diagrams contain the leading term and pieces suppressed by $1/N^2$ and $1/N^4$. The 4 quark diagrams are suppressed by 1/N and $1/N^3$.

dijet mass distribution

Real diagrams

- The matrix elements for the production of W+2 jets with an extra soft gluon are also divergent, for example in the limit $E_{gluon} \rightarrow 0$.
- However, in these diagrams, the (colour-ordered) matrix elements undergo a remarkable factorization:

- The eikonal factor contains all the soft and collinear singularities.
- Exploit this to cancel the singularities.

Real diagrams, continued

- Now we must compensate for the singularities that we just cancelled.
- This is done by analytically integrating the eikonal factor over the phase space of the soft gluon, to give:

$$\int \text{(eikonal factor)} \, dPS = \frac{D}{\epsilon^2} + \frac{E}{\epsilon} + F$$

- This is called the subtraction method.
- Careful choice of the kinematics in the lowest-order matrix elements is made, to optimize the singularity cancellation - the dipole subtraction scheme.

Result

$$= \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times$$
Tree ight in the second secon

- A = -D, B = -E ... so all poles cancel (KLN).
- We are left with integrals over the final 2-jet phase-space for:
 - The remaining finite parts of the loop diagrams;
 - The non-singular real emission diagrams where one jet contains a soft gluon or a collinear quark.

W+2 jet outline

- 1. Assemble all loop matrix elements.
- 2. Assemble all real radiation matrix elements.
- 3. Enumerate all possible soft, collinear singularities.
- 4. Construct appropriate counterterms to cancel these.
- 5. Check the cancellation occurs in the singular limits.
- 6. Integrate over the singular areas of phase-space.
- 7. Check that these poles cancel with those from loops.
- 8. With a given jet definition and cuts, perform the phase-space integration.
- 9. Accumulate predictions for any observables required.

MCFM Summary - v. 3.2

$$\begin{array}{ll} p\bar{p} \rightarrow W^{\pm}/Z & p\bar{p} \rightarrow W^{+} + W^{-} \\ p\bar{p} \rightarrow W^{\pm} + Z & p\bar{p} \rightarrow Z + Z \\ p\bar{p} \rightarrow W^{\pm} + \gamma & p\bar{p} \rightarrow W^{\pm}/Z + H \\ p\bar{p} \rightarrow W^{\pm} + g^{\star} \left(\rightarrow b\bar{b} \right) & p\bar{p} \rightarrow Zb\bar{b} \\ p\bar{p} \rightarrow W^{\pm}/Z + \text{1 jet} & p\bar{p} \rightarrow W^{\pm}/Z + \text{2 jets} \end{array}$$

- MCFM aims to provide a unified description of a number of processes at NLO accuracy.
- Various leptonic and/or hadronic decays of the bosons are included as further sub-processes.
- MCFM version 2.0 is now part of the CDF code repository. Working closely with experimenters to produce user-friendly input and output.

MCFM Information

Version 3.2 available at:

http://theory.fnal.gov/people/ellis/Programs/mcfm.html

- Improvements over previous release:
 - more processes
 - better user interface
 - support for PDFLIB, Les Houches PDF accord
- Coming attractions (soon):
 - ntuples instead of histograms
 - unweighted events
 - Les Houches generator interface

- Cone-based algorithm, $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > R$.
- Very popular in Run I.
- Suffers from sensitivity to soft radiation at NLO.

 Instability can be mitigated by extra jet seeds, e.g. midpoint algorithms.

Defining a jet - k_T algorithm

- Preferred by theory insensitive to soft radiation, immediate matching to resummed calculations.
- Limited experimental use at hadron colliders due to difficulties with energy subtraction.
- Jets are clustered according to the relative transverse momentum of one jet with respect to another.
- Similarity with cone jets is kept, since the algorithm still terminates with all jets having $\Delta R > R$.
- We shall adopt the k_T prescription that is laid out for Run II (G. Blazey et al.), where other ambiguities such as the jet recombination scheme are fixed.

Tevatron event cuts

- k_T clustering algorithm with pseudo-cone size, R = 0.7.
- Jet cuts:

$$p_T^{
m jet} > 15$$
 GeV, $|y^{
m jet}| < 2$.

- Exclusive cross-section so exactly 2 jets.
- Lepton cuts:

$$p_T^{
m lepton} > 20$$
 GeV, $|y^{
m lepton}| < 1$.

- (W only) Missing transverse momentum: $p_T^{\rm miss} > 20$ GeV.
- (Z only) Dilepton mass: $m_{e^-e^+} > 15$ GeV (since γ^* is also included).

Scale dependence

- Choose equal factorization and renormalization scales.
- Examine scale dependence of the cross-section integrated over $20~{\rm GeV} < m_{JJ} < 200~{\rm GeV}.$

• Scale dependence much reduced from $\sim 100\%$ to $\sim 10\%$ in both cases.

Leading p_T distribution

• p_T distribution of the hardest jet in W,Z+2 jet events, at the scale $\mu=80$ GeV.

- Turn-over at low p_T since 15 GeV $< p_T^2 < p_T^1$.
- The exclusive spectrum is much softer at next-to-leading order, as in the 1-jet case.
- High- E_T tail is 'filled in' for the inclusive case.

Jet-jet separation

- In Run I, there was some discrepancy in the shape of the jet-jet separation ΔR_{jj} compared with LO theory.
- Results at NLO appear to confirm the leading order shape, with no significant dependence on scale.

Di-jet mass in Run I

 Compare the predicted shapes with data, allowing the total cross-section to float.

 Much better agreement with NLO result, especially towards both ends of the distribution.

$V+ \geq 2$ jets at the LHC

• Different set of cuts at $\sqrt{s} = 14$ TeV and here we consider the inclusive cross section.

• The NLO corrections are somewhat smaller than at the Tevatron, approximately 10-20% around $\mu=M_W$.

Jet rapidities at the LHC

• The shapes of the jet rapidity distributions do not change significantly at next-to-leading order.

 Further study of these processes at the LHC is underway.

Heavy flavour content

- Many signals of new physics involve the production of a W or Z boson in association with a heavy particle that predominantly decays into a $b\bar{b}$ pair.
- A light Higgs is a prime example and will provide a promising search channel in Run II.

$$p\bar{p} \longrightarrow W(\to e\nu)H(\to b\bar{b})$$

 $p\bar{p} \longrightarrow Z(\to \nu\bar{\nu}, \ell\bar{\ell})H(\to b\bar{b})$

- However, we will need to understand our SM backgrounds very well to perform this search.
- The largest background is 'direct' production:

$$p\bar{p} \longrightarrow W g^{\star}(\to b\bar{b})$$

 $p\bar{p} \longrightarrow Z b\bar{b}$

Background importance

• NLO study of WH search using MCFM.

Predicting the $Wb\bar{b}$ background

- There are a number of methods for predicting the Standard Model 'direct' background.
- Amongst the theoretical choices are:
 - Fixed order vs. event generator;
 - LO vs. NLO;
 - Pythia vs. Herwig;
 - Massive b's vs. Massless b's.
- Citing a 40% uncertainty on the leading-order calculation (M. Mangano), a recent study by CDF uses a mixed approach relying heavily on generic W+ jet data, but with some theoretical input.

Hybrid recipe

- 1. Measure the number of W+2 jet events.
- 2. Subtract the number of events predicted by theory from non-direct channels.
 - $t\bar{t}$ (Pythia norm. to NLO)
 - Diboson (Pythia norm. to NLO)
 - Single top (Pythia/Herwig norm. to NLO)
- 3. This estimates the number of direct W+2 jet events.
- 4. Use VECBOS (leading order) + Herwig to estimate the fraction of W+2 jet events that contain two b's.
- 5. Obtain prediction for direct $W+b\bar{b}$ events.

Other $Wb\bar{b}$ backgrounds

single top (s)
$$q$$

Alternatives

- Is this the best we can do?
- VECBOS suffers from the same leading order uncertainty that we were trying to avoid.
- We can calculate the $Wb\bar{b}$ cross-section at NLO in MCFM. This has a much reduced scale dependence, but suffers from no showering and massless b's.
- Another option is to calculate the same fraction,

$$\frac{\sigma(Wb\bar{b})}{\sigma(W+2 \text{ jet})}$$

that is calculated by Herwig, but at NLO. Some systematics (showering, perhaps) should cancel.

b-mass effects

• Compare the lowest order predictions for m_b zero and non-zero.

• In the interesting region - the peak at low mass - matrix element effects dominate over phase space. The corrections there are of order 5%.

m_{JJ} distributions

• $Wb\bar{b}$ and W+2 jet distributions appear very similar in shape at both LO and NLO. The shapes change when moving to a lower scale, with a depletion in the cross-section at high M_{jj} .

Heavy flavour fraction

 The ratio of b-tagged to untagged jets changes very little at NLO and appears to be predicted very well by perturbation theory.

• The fraction is peaked at low M_{jj} , where it is approximately 2.5 times as high as the fairly constant value of 0.8% for $M_{jj}>60$ GeV.

Conclusions

- The NLO corrections for W/Z+2 jets have been calculated.
- Scale dependence is greatly reduced to $\sim 10\%$ and distributions are considerably changed upon including QCD corrections.
- NLO code is contained in MCFM v3.2. Current code in the CDF repository is v2.0 and will be updated soon.
- The fraction of a W+2 jet sample that contains two b-jets is predicted very well in perturbation theory.
- There are many interesting studies to be done from tests of QCD to backgrounds for new physics.

